Kamis, 02 Agustus 2018

alat pemurnian air

Penjernihan air diperlukan karena air bersih merupakan sumber bagi kehidupan. Sering kita mendengar penjernihan air di bumi disebut sebagai planet biru, karena air menutupi 3/4 permukaan bumi. Tetapi tidak jarang pula kita mengalami kesulitan mendapatkan air bersih, terutama saat musim kemarau disaat air sumur mulai berubah warna atau berbau. Ironis memang, tapi itulah kenyataannya. Yang pasti kita harus selalu optimis. Sekalipun air sumur atau sumber air lainnya yang kita miliki mulai menjadi keruh, kotor ataupun berbau, selama kuantitasnya masih banyak kita masih dapat mengolah dengan penjernihan air berupaya merubah/pemurnian air keruh/kotor tersebut menjadi air bersih yang layak pakai dengan teknik penjernihan air.penjernihan air
Ada berbagai macam cara sederhana yang dapat kita gunakan untuk mendapatkan air bersih, dan cara yang paling mudah dan paling umum digunakan adalah dengan membuat saringan air, dan bagi kita mungkin yang paling tepat adalah membuat penjernih air atau saringan air sederhana. Perlu diperhatikan, bahwa air bersih yang dihasilkan dari proses penyaringan air / penjernihan air secara sederhana tersebut tidak dapat menghilangkan sepenuhnya garam yang terlarut di dalam air. Gunakan destilasi sederhana untuk menghasilkan air yang tidak mengandung garam. Berikut beberapa alternatif cara sederhana untuk mendapatkan air bersih dengan cara penyaringan air / penjernihan air :
1. Saringan Kain Katun
Pembuatan saringan air / penjernihan air dengan menggunakan kain katun merupakan teknik penyaringan yang paling sederhana / mudah. Air keruh disaring dengan menggunakan kain katun yang bersih. Saringan ini dapat membersihkan air dari kotoran dan organisme kecil yang ada dalam air keruh. Air hasil saringan tergantung pada ketebalan dan kerapatan kain yang digunakan.
2. Saringan Kapas
Teknik saringan air ini dapat memberikan hasil yang lebih baik dari teknik sebelumnya. Seperti halnya penyaringan air dengan kain katun, penyaringan dengan kapas juga dapat membersihkan air dari kotoran dan organisme kecil yang ada dalam air keruh. Hasil saringan juga tergantung pada ketebalan dan kerapatan kapas yang digunakan.
3. Aerasi
Aerasi merupakan proses penjernihan air dengan cara mengisikan oksigen ke dalam air. Dengan diisikannya oksigen ke dalam air maka zat-zat seperti karbon dioksida serta hidrogen sulfida dan metana yang mempengaruhi rasa dan bau dari air dapat dikurangi atau dihilangkan. Selain itu partikel mineral yang terlarut dalam air seperti besi dan mangan akan teroksidasi dan secara cepat akan membentuk lapisan endapan yang nantinya dapat dihilangkan melalui proses sedimentasi atau filtrasi.
4. Saringan Pasir Lambat (SPL)
Penjernihan air dengan saringan pasir lambat merupakan saringan air yang dibuat dengan menggunakan lapisan pasir pada bagian atas dan kerikil pada bagian bawah. Air bersih didapatkan dengan jalan menyaring air baku melewati lapisan pasir terlebih dahulu baru kemudian melewati lapisan kerikil.
5. Saringan Pasir Cepat (SPC)
Penjernihan air dengan saringan pasir cepat seperti halnya saringan pasir lambat, terdiri atas lapisan pasir pada bagian atas dan kerikil pada bagian bawah. Tetapi arah penyaringan air terbalik bila dibandingkan dengan Saringan Pasir Lambat, yakni dari bawah ke atas (up flow). Air bersih didapatkan dengan jalan menyaring air baku melewati lapisan kerikil terlebih dahulu baru kemudian melewati lapisan pasir.
6. Gravity-Fed Filtering System
Penjernihan air dengan teknik Gravity-Fed Filtering System merupakan gabungan dari Saringan Pasir Cepat(SPC) dan Saringan Pasir Lambat(SPL). Air bersih dihasilkan melalui dua tahap. Pertama-tama air disaring menggunakan Saringan Pasir Cepat(SPC). Air hasil penyaringan tersebut dan kemudian hasilnya disaring kembali menggunakan Saringan Pasir Lambat. Dengan dua kali penyaringan tersebut diharapkan kualitas air bersih yang dihasilkan tersebut dapat lebih baik. Untuk mengantisipasi debit air hasil penyaringan yang keluar dari Saringan Pasir Cepat, dapat digunakan beberapa / multi Saringan Pasir Lambat.
7. Saringan Arang
Penjernihan air menggunakan saringan arang dapat dikatakan sebagai saringan pasir arang dengan tambahan satu buah lapisan arang. Lapisan arang ini sangat efektif dalam menghilangkan bau dan rasa yang ada pada air baku. Arang yang digunakan dapat berupa arang kayu atau arang batok kelapa. Untuk hasil yang lebih baik dapat digunakan arang aktif.
8. Saringan air sederhana / tradisional
Penjernihan air sederhana/tradisional merupakan modifikasi dari saringan pasir arang dan saringan pasir lambat. Pada saringan tradisional ini selain menggunakan pasir, kerikil, batu dan arang juga ditambah satu buah lapisan injuk / ijuk yang berasal dari sabut kelapa. Untuk bahasan lebih jauh dapat dilihat pada artikelsaringan air sederhana.
9. Saringan Keramik
Penjernihan air menggunakan saringan keramik dapat disimpan dalam jangka waktu yang lama sehingga dapat dipersiapkan dan digunakan untuk keadaan darurat. Air bersih didapatkan dengan jalan penyaringan air melalui elemen filter keramik. Beberapa filter kramik menggunakan campuran perak yang berfungsi sebagai disinfektan dan membunuh bakteri. Ketika proses penyaringan, kotoran yang ada dalam air baku akan tertahan dan lama kelamaan akan menumpuk dan menyumbat permukaan filter. Sehingga untuk mencegah penyumbatan yang terlalu sering maka air baku yang dimasukkan jangan terlalu keruh atau kotor. Untuk perawatan saringan keramik ini dapat dilakukan dengan cara menyikat filter keramik tersebut pada air yang mengalir.
10. Saringan Cadas / Jempeng / Lumpang Batu
Penjernihan air denganaalt saringan cadas atau jempeng ini mirip dengan saringan keramik. Air disaring dengan menggunakan pori-pori dari batu cadas. Saringan ini umum digunakan oleh masyarakat desa Kerobokan, Bali. Saringan tersebut digunakan untuk menyaring air yang berasal dari sumur gali ataupun dari saluran irigasi sawah.
Seperti halnya saringan keramik, kecepatan air hasil saringan dari jempeng relatif rendah bila dibandingkan dengan SPL terlebih lagi SPC.
11. Saringan Tanah Liat
Kendi atau belanga dari tanah liat yang dibakar terlebih dahulu dibentuk khusus menyerupai alat penjernihan air pada bagian bawahnya agar air bersih dapat keluar dari pori-pori pada bagian dasarnya.
12.Saringan Pasir Lambat (SPL)
Penjernihan air menggunakan saringan Pasir Lambat (SPL) alias Slow Sand Filter (SSF) sudah lama dikenal di Eropa sejak awal tahun 1800an. Untuk memenuhi kebutuhan akan air bersih, Saringan Pasir Lambat dapat digunakan untuk menyaring air keruh ataupun air kotor. Saringan Pasir Lambat sangat cocok untuk memenuhi kebutuhan akan air bersih pada komunitas skala kecil atau skala rumah tangga. Hal ini tidak lain karena debit air bersih yang dihasilkan oleh SPL relatif kecil.
Proses penjernihan air pada Saringan Pasir Lambat dilakukan secara fisika dan biologi. Secara Fisika, partikel-partikel yang ada dalam sumber air yang keruh atau kotor akan tertahan oleh lapisan pasir yang ada pada saringan. Secara biologi, pada saringan akan terbentuk sebuah lapisan bakteri. Bakteri-bakteri dari genus Pseudomonas dan Trichoderma akan tumbuh dan berkembang biak membentuk sebuah lapisan khusus. Pada saat proses filtrasi dengan debit air lambat (100-200 liter/jam/m2 luas permukaan saringan), patogen yang tertahan oleh saringan akan dimusnahkan oleh bakteri-bakteri tersebut.
Untuk perawatan saringan pasir lambat, secara berkala pasir dan kerikil harus selalu dibersihkan. Hal ini untuk menjaga agar kuantitas dan kualitas air bersih yang dihasilkan selalu terjaga dan yang terpenting adalah tidak terjadi penumpukan patogen / kuman pada saringan. Untuk mendapatkan hasil air bersih yang lebih maksimal baik kualitas maupun kuantitasnya, anda dapat menggabungkan atau mengkombinasikan saringan pasir lambat ini dengan berbagai jenis metode penyaringan air sederhana lainnya.
Adapun untuk disinfeksi / penghilangan kuman yang terkandung dalam air dapat menggunakan menggunakan berbagai cara seperti chlorinasi, brominasi, ozonisasi, penyinaran ultraviolet ataupun menggunakan aktif karbon. Untuk menjaga hal-hal yang tidak diinginkan, sebaiknya air hasil penyaringan dimasak terlebih dahulu hingga mendidih sebelum dikonsumsi atau anda mungkin dapat menggunakan cara disinfeksi / menghilangkan kuman pada air secara sederhana lainnya.
Cara Sederhana Menghilangkan Kuman dari Air Minum
Air bersih yang kita dapat dari PAM/PDAM/ledeng, sumur ataupun saringan air yang kita miliki mungkin akan terlihat bening, tidak berasa dan tidak berbau, tetapi hal itu tidak menandakan bahwa air tersebut bersih dari kuman penyakit. Sebelum dikonsumsi, sebaiknya kita harus memastikan bahwa air yang akan kita konsumsi terbebas dari kuman penyakit. Disinfeksi atau menghilangkan kuman dari air minum sangat penting dilakukan agar kuman tersebut tidak masuk ke dalam tubuh kita.
Ada berbagai cara untuk melakukan disinfeksi atau menghilangkan kuman penyakit dari air yang akan kita konsumsi. Selengkapnya sebagai berikut :
1. Memanaskan atau memasak air
Pasteurisasi atau pemanasan untuk air yang akan dikonsumsi pada suhu / temperatur 55ºC – 60ºC selama sepuluh menit akan mematikan sebagian besar patogen atau kuman penyakit yang ada/terkandung di dalam air. Cara yang lebih efektif adalah memasak atau merebus air yang akan kita konsumsi hingga mendidih. Cara ini sangat efektif untuk mematikan semua patogen yang ada dalam air seperti virus, bakteri, spora, fungi dan protozoa. Lama waktu air mendidih yang dibutuhkan adalah berkisar 5 menit, namun lebih lama lagi waktunya akan lebih baik, direkomendasikan selama 20 menit.
Walaupun mudah dan sering kita gunakan, kendala utama dalam memasak air hingga mendidih ini adalah bahan bakar, baik itu kayu bakar, briket batubara, minyak tanah, gas elpiji ataupun bahan bakar lainnya.
2. Radiasi dan Pemanasan Dengan Menggunakan Sinar Matahari
Proses radiasi ultra violet dan pemanasan air dengan menggunakan sinar matahari ini dapat dilakukan dengan bantuan wadah logam ataupun botol transparan. Botol transparan yang digunakan umumnya adalah botol plastik. Botol kaca dapat digunakan tetapi memiliki kelemahan mudah pecah, lebih berat dan membutuhkan waktu yang lebih lama untuk pemanasan. Oleh karena itu gunakanllah botol kaca yang dapat ditembus oleh sinar ultra violet.
Untuk mengantisipasi bahaya dari pemakaian plastik, sebaiknya gunakan botol plastik dengan nomor logo daur ulang 1 atau PETE/PET (polyethylene terephthalate), atau lebih baik lagi bila anda memiliki botol bernomor 5 atau PP (polypropylene). Keterangan lebih lanjut mengenai jenis plastik tersebut dapat anda lihat padanomor jenis plastik daur ulang.
Untuk mempercepat proses radiasi dan pemanasan botol transparan tersebut dicat hitam pada salah satu sisinya (50% dari permukaan botol) atau diletakkan pada permukaan media yang berwarna gelap yang dapat mengumpulkan dan menimbulkan radiasi panas. Pada kondisi demikian, setelah diletakkan selama beberapa jam (5-6 jam untuk keadaan cerah) air di dalam botol tersebut akan dapat mencapai 55ºC (mencapai suhu pasteurisasi) sehingga patogen yang ada dalam air dapat dieliminir.
Untuk hasil yang lebih baik lagi, sebelum dijemur lakukan proses aerasi dengan mengocok botol terlebih dahulu setelah itu botol diletakkan pada permukaan metal seperti atap seng.
3. Air Perasan Jeruk Nipis
Cara ini efektif untuk mengatasi virus kolera. Dengan menambahkan air jeruk nipis hingga mencapai 1-5% dari air yang hendak dikonsumsi dapat menurunkan pH air di bawah 4,5. Pada tahap ini virus kolera dapat dikurangi hingga hampir 100%. Selain itu dari hasil penelitian, pertumbuhan virus kolera pada nasi dapat ditahan dengan menggunakan air jeruk nipis pada saat dimasak.
Kelemahan dari cara ini adalah bila campuran air perasan jeruk nipis terlalu banyak akan dapat merubah rasa air.

lapisan pelindung dan pengilap

Lapisan pelindung pada daun tumbuhan yang menginspirasi pembuatan lapisan pengilap cat mobil adalah..
a.floem
b.kutikula
c.endodermis
d.rambut akar

Sensor cahaya

Sensor cahaya adalah komponen elektronika yang dapat memberikan perubahan besaran elektrik pada saat terjadi perubahan intensitas cahaya yang diterima oleh sensor cahayatersebut. Sensor cahaya dalam kehidupan sehari-hari dapat kita temui pada penerima remote televisi dan pada lampu penerangan jalan otomatis.
Sensor Cahaya

Jenis-Jenis Sensor Cahaya

Dilihat dari perubahan output sensor cahaya maka sensor cahaya dapat dibedakan kedalam 2 tipe yaitu :
  • Sensor cahaya tipe fotovoltaik
  • Sensor cahaya tipe fotokonduktif
Kemudian apabila dilihat dari cahaya yang diterima sensor cahaya tersebut, maka sensor cahaya dapat dibagi dalam beberapa tipe sebagai berikut :
  • Sensor cahaya infra merah
  • Sensor cahaya ultraviolet

Sensor Cahaya Tipe Fotovoltaik

Sensor cahaya tipe fotovolataik adalah sensor cahaya yang dapat memberikan perubahan tegangan pada output sensor cahaya tersebut apabila sensor tersebut menerima intensitas cahaya. Salah satu contoh sensor cahaya tipe fotovoltaik adalah solar cell atau sel surya.
Solar Cell
Sensor cahaya tipe photovoltaic adalah alat sensor sinar yang mengubah energi sinar langsung menjadi energi listrik. Sel solar silikon yang modern pada dasarnya adalah sambungan PN dengan lapisan P yang transparan. Jika ada cahaya pada lapisan transparan P akan menyebabkan gerakan elektron antara bagian P dan N, jadi menghasilkan tegangan DC yang kecil sekitar 0,5 volt per sel pada sinar matahari penuh. Berikut konstruksi dari sensor cahaya tipe fotovoltaik.
Konstruksi Solar Cell

Sensor Cahaya Fotokonduktif

Sensor cahaya tipe fotokonduktif akan memberikan perubahan resistansi pada terminal outputnya sesuai dengan perubahan intensitas cahaya yang diterimanya. Sensor cahaya tipe fotovoltaik ini ada beberapa jenis diantaranya adalah :
  • LDR (Light Depending Resistor)
  • Photo Transistor
  • Photo Dioda

LDR (Light Depending Resistor)

Sensor CahayaLDR (Light Depending Resistor)
LDR adalah sensor cahaya yang memiliki 2 terminal output, dimana kedua terminal output tersebut memiliki resistansi yang dapat berubah sesuai dengan intensitas cahaya yang diterimanya. Dimana nilai resistansi kedua terminal output LDR akan semakin rendah apabila intensitas cahya yang diterima oleh LDR semakin tinggi.

Photo Transistor

PhototransistorPhoto transistor
Photo transistor adalah suatu transistor yang memiliki resistansi antara kaki kolektor dan emitor dapat berubah sesuai intensitas cahaya yang diterimanya. Photo transistormemiliki 2 terminal output dengan nama emitor dan colektor, dimana nilai resistansi emeitor dan kolektro tersebut akan semakin rendah apabila intensitas cahaya yang diterim photo transistor semnakin tinggi.

Photo Dioda

PhotodiodaPhoto dioda
Photo dioda adalah suatu dioda yang akan mengalami perubahan resistansi pada terminal anoda dan katoda apabila terken cahaya. Nilai resistansi anoda dan katoda pada photo dioda akan semakin rendah apabila intensitas cahaya yang diterima photodioda semkin tinggi.

Sensor Cahaya Infra Merah

Sensor cahaya infra merah adalah sensor cahaya yang hanya akan merespon perubahan cahaya inframerah. Sensor cahaya infra merah pada umumnya berupa photo ttransistor atau photo dioda. Dimana apabila sensor cahaya infra merah ini menerima pancaran cahaya infra merah maka pada terminal outputnya akan memberikan perubahan resistansi. Akan tetapi ada juga sensor cahaya yang telah dibuat dalam bentuk chip IC penerima sensor infra merah seperti yang digunakan pada penerima remote televisi. Dimana chip IC sensor infra merah ini akan memberikan perubahan tegangan output apabila IC sensor infra merah ini menerima pancaran cahaya infra merah. Berikut adalah bentuk dari IC sensor infra merah tersebut.

IC sensor Infra MerahSensor Cahaya Ultraviolet

Sensor cahaya ultraviolet merupakan sensor cahaya yang hanya merespon perubahan intensitas cahaya ultraviolet yang mengenainya. Seonsor cahaya ultraviolet ini akan memberikan perubahan besaran listrik pada terminal outputnya pada saat menerima perubahan intensitas pancaran cahaya ultraviolet. Sensor cahaya yang populer salah satunya UVtron. Modul sensor cahaya UVtron akan memberikan perubahan tegangan output pada saat sensor UVtron menerima perubahan intensitas cahaya ultraviolet. Berikut adalah bentuk modul sensor cahaya UVtron.
Sensor Cahaya Ultraviolet UVtronModul sensor cahaya ultraviolet UVtron

panel surya

Panel surya adalah alat yang terdiri dari sel surya yang mengubah cahaya menjadi listrik. Mereka disebut surya atas Matahari atau "sol" karena Matahari merupakan sumber cahaya terkuat yang dapat dimanfaatkan. Panel surya sering kali disebut sel photovoltaic, photovoltaic dapat diartikan sebagai "cahaya-listrik". Sel surya atau sel PV bergantung pada efek photovoltaic untuk menyerap energi Matahari dan menyebabkan arus mengalir antara dua lapisan bermuatan yang berlawanan.
Jumlah penggunaan panel surya di porsi pemroduksian listrik dunia sangat kecil, tertahan oleh biaya tinggi per wattnya dibandingkan dengan bahan bakar fosil - dapat lebih tinggi sepuluh kali lipat, tergantung keadaan. Mereka telah menjadi rutin dalam beberapa aplikasi yang terbatas seperti, menjalankan "buoy" atau alat di gurun dan area terpencil lainnya, dan dalam eksperimen lainnya mereka telah digunakan untuk memberikan tenaga untuk mobil balap dalam kontes seperti Tantangan surya dunia di Australia.
Pada 2001 Jepang telah memasang kapasitas 0,6 MWp tenaga surya puncak, sementara itu Jerman memilik 0,26 MWp dan Amerika Serikat 0,16 MWp. Pada saat ini tenaga listrik surya seluruh dunia kira-kira sama dengan yang diproduksi oleh satu kincir angin bear. Di AS biaya pemasangan panel surya ini telah jatuh dari $55 per watt puncak pada 1976 menjadi $4 per watt peak di 2001.
Di tahun 2003 Amerika Serikat berkembang menjadi panel surya portable. 

struktur dan fungsi jaringan pada daun

Struktur dan Fungsi Jaringan Daun – Daun merupakan organ tumbuhan yang menempel pada batang. Daun berfungsi sebagai tempat melakukan fotosintesin Setiap tumbuhan memiliki bentuk, ukuran, dan warna daun yang khas untuk mencirikan tumbuhan tersebut.
Melalui pengamatan, kamu dapat membedakan antara daun dikotil dan monokotil. Pada tumbuhan .dikotil memiliki peruratan memata jala, sedangkan pada tumbuhan monokotil memiliki peruratan daun yang sejajar atau melengkung, seperti pada Gambar3.11 dan 3.12.


Struktur Dan Fungsi Jaringan Daun
Struktur Dan Fungsi Jaringan Daun

Bagaimana struktur anatomi daun, sehingga dapat melaksanakan fungsi fotosintesis dan pertukaran zat? Setiap struktur daun tersusun dari lapisan- lapisan sel yang menyusunnya. Lihat pada Gambar 3.13! Pada permukaan atas dan bawah daun terdapat lapisan tipis sel yang disebutdengan epidermis yang berfungsi untuk melindungi daun. Pada beberapa tumbuhan, daun dilapisi oleh lapisan kutikula serupa lilin.


Struktur Jaringan Daun
Struktur Jaringan Daun

Epidermis tersusun oleh selapis sel yang dinding selnya mengalami penebalan dari kitin (kutikula) atau kadang lignin. Kutikula ini berfungsi untuk mencegah terjadinya penguapan air yang terlalu besar pada daun. Epidermis terletak di baqian atas dan bawah daun. Epidermis pada beberapa tumbuhan mengalami modifikasi menjadi berbagai bentuk lain, misalnya menjadi stomata, trikoma, dan sel kipas, sehingga memiliki fungsi tambahan.
Stomata berfungsi untuk keluar masuknya udara. Stomata banyak ditemukan pada permukaan daun. Stomata terdiri atas lubang yang diapitoleh dua sel penutup. Pada lapisan di bawah jaringan epidermis ditemukan adanya jaringan mesofil, merupakan jaringan parenkim (jaringan dasar). Mesofil terletakdi antara epidermis atas dan epidermis bawah.

Mesofil pada daun dikotil berdiferensiasi menjadi dua parenkim.

  1. Parenkim palisade atau jaringan tiang yang terdiri atas sel-sel berbentuk silinder, tersusun rapat, dan mengandpng banyak kloroplas.
  2. Parenkim spons atau jaringan bunga karang yang tersusun dari sel-sel yang tidak teratur, tersusun renggang, dan mengandung lebih sedikit kloroplas.

Perhatian Struktur dan Fungsi Jaringan Daun

Klorofil (C55H7205N4Mg) atau zat hijau daun akan memberi warna hijau pada daun tumbuhan. Molekul klorofil adalah molekul utama yang dibutuhkan dalam proses fotosintesis, karena klorofil ini berfungsi dalam menyerap cahaya merah, biru, dan ungu, serta memantulkan cahaya hijau dan sedikit kuning.
Mesofil pada monokotil tidak berdefensiasi menjadi jaringan tiang dan jaringan bunga karang, tetapi tersusun atas sel parenkim yang struktur dan ukurannya seragam. Di bawah jaringan mesofil ditemukan adanya berkas pengangkut pada daun dan membentuk bangunan yang kompleks yang disebut tulang daun.

struktur dan fungsi jaringan pada batang

Struktur Dan Fungsi Jaringan Pada Batang Tumbuhan


Adik-adik pasti tahu batang tumbuhan bukan? tapi adik-adik tahu gak, seperti apa struktur dan fungsi pada batang tumbuhan, dan juga ada berapa macam batang di dunia ini? Mau tahu? Langsung aja baca penjelasanku dibawah ini. Cekidot!



Di bumi ini, ada 2 macam batang, yaitu batang dikotil dan batang monokotil.Di batang terdapat jaringan epidermis, jaringan parenkim, jaringan penyokong, dan jaringan pengangkut. Selanjutnya kalian akan belajar tentang struktur dan fungsi jaringan pada batang tumbuhan.

>>KLIK! untuk memperjelas.
Ini adalah penampang melintang batang dikotil, dan
struktur jaringannya teratur. Di batang dikotil, diantara xilem dan floem 
terdapat kambium.

 >>KLIK! untuk memperjelas.
Ini adalah penampang melintang batang monokotil, dan 
struktur jaringannya tidak teratur. Di batang monokotil, diantara xilem dan floem 
tidak terdapat kambium.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   ~FUNGSI JARINGAN~
Pada Batang Tumbuhan
  1. Fungsi kambium adalah memeperbesar batang, yang mengalami aktivitas pembelahan sel-sel kambium,
  2. Fungsi xilem adalah menyalurkan air dan mineral dari tanah ke seluruh bagian tumbuhan, terutama daun,
  3. Fungsi floem adalah mengangkut zat makanan dari daun ke seluruh bagian tumbuhan,
  4. Fungsi Epidermis adalah melindungi bagian dalam batang , dan
  5. Fungsi Jaringan Parenkim(bagian yang berwarna hijau) adalah tempat pertukaran zat dan penyimpanan makanan cadangan.

struktur dan fungsi jaringan pada akar

Struktur Jaringan pada Akar dan Fungsinya – Pada tumbuhan tingkat tinggi terdapat tiga macam organ pokok, yaitu akar, batang, dan daun. Akar tersusun dari beberapa jaringan yang teroganisir untuk melakukan fungsi-fungsi tertentu.

Fungsi Akar

Adapun fungsi akar adalah sebagai berikut:
  • Menyerap unsur-unsur hara yang berada dalam tanah;
  • Menegakkan berdirinya batang tanaman;
  • Mengangkut unsur hara sampai ke batang;
  • Beberapa akar berfungsi untuk menyimpan makanan.
Pada tumbuhan monokotil mempunyai perakaran serabut. Hampir semua akar tumbuh dari pangkal batang dengan diameter yang hampir sama. Pada tumbuhan dikotil mempunyai sistem perakaran tunggang. Akar primer bercabang-cabang, dari pangkal sampai keujung semakin kecil

Struktur Akar

Pada akar monokotil dan dikotil yang belum mengalami pembesaran sekunder tersusun dari jaringan epidermis, korteks, endodermis, dan silinder pusat (stele). Pada tumbuhan yang mengalami pembesaran sekunder, jaringan penyusun tubuhnya juga bertambah, yaitu dengan adanya kayu dan kulit sekunder, adanya felogen yang menghasilkan feloderm dan felem (gabus).

Epidermis akar

Pada irisan melintang akar, tampak satu lapis sel yang tersusun pada lapisan terluar yang disebut epidermis. Di dekat ujung akar terdapat rambut akar, yaitu tonjolan dari epidermis yang berfungsi untuk memperluas permukaan akar, sehingga mempercepat penyerapan zat hara dari dalam tanah. Semakin jauh dari ujung akar, bulu akar lenyap. Epidermis umumnya dilapisi dengan zat gabus yang tidak berfungsi untuk penyerapan zat, tetapi berfungsi sebagai pelindung sel-sel dibawahnya.

Korteks

Korteks termasuk jaringan parenkim yang tersusun dari beberapa sel dibawah jaringan epidermis. Korteks berfungsi untuk meneruskan pengangkutan zat hara yang telah di absorpsi oleh epidermis menuju ke silinder pusat melalui endodermis. Pada beberapa tumbuhan, korteks berfungsi untuk menyimpan zat tepung.




Endodermis

Endodermis tersusun dari satu lapis sel dibawah korteks. Penebalan zat gabus pada dinding sel yang tegak lurus silinder pusat berbentuk pita yang disebut pita kaspari, yang tidak dapat di tembus oleh air. Dengan penebalan zat gabus ini, endodermis berfungsi mengatur masuknya air dan zat terlarut kedalam silinder pusat. Pada monokotil penebalan dinding sel endodermis berbentuk huruf U sehingga tidak dapat berfungsi untuk transfor air menuju ke silinder pusat. Untuk fungsi tersebut tumbuhan monokotil mempunyai sel endodermis khusus yang disebut sel penerus yang dindingnya tidak mengalami penebalan

Silinder pusat (Stele)

Silinder pusat tersusun dari jaringan-jaringan yang berada dalam jaringan endodermis. Jaringan terluar disebut perisikel atau perikambium. Sel-sel yang berhadapan dengan xilem dapat bersifat meristem dan membelah diri untuk pembentukan cabang akar. Berkas pengangkutan terdiri atas xilem dan floem. Xilem menerima zat hara dari endodermis dan diteruskan ke xilem pada batang. Pada dikotil terdapat kambium yang memisahkan xilem dan floem. Kambium selalu membelah diri membentuk jaringan sekunder termasuk xilem dan floem sekunder, sehingga menyebabkan pertumbuhan sekunder.
Pada irisan membujur tampak ujung akar dilindungi oleh kaliptra yang dibentuk oleh kelompok sel pemula (titik tumbuh). Pada monokotil, kelompok sel pemula yang membentuk kaliptra disebut kaliptrogen, sehingga batas antara ujung akar dengan kaliptra sangat jelas. Pada kaliptra biasanya terdapat sel kolumela yang berisi butir tepung dan diduga mempengaruhi arah pertumbuhan akar. Kelompok sel pemula yang lain merupakan titik tumbuh yang membentuk jaringan-jaringan pada akar.

jaringan dewasa pada tumbuhan

Jaringan Dewasa Pada Tumbuhan

Jaringan dewasa pada tumbuhan awalnya berasal dari jaringan meristem, tetapi telah mengalami pertumbuhan dan diferensiasi sehingga menjadi jaringan lain dengan fungsi yang berbeda. Jaringan dewasa merupakan kelompok sel tumbuhan yang berasal dari pembelahan sel-sel meristem dan telah mengalami pengubahan bentuk yang disesuaikan dengan fungsinya (Diferensiasi). Jaringan dewasa ada yang sudah tidak bersifat meristematik lagi (sel penyusunnya sudah tidak membelah lagi) sehingga disebut jaringan permanen.

Sifat sifat jaringan dewasa pada tumbuhan :

• Tidak terjadi aktivitas membelahan diri
• Memiliki ukuran yang cukup besar dibandingkan sel sel meristem
• Mempunyai vakuola yang besar sehingga plasma sel sedikit dan merupakan selaput yang menempel pada dinding sel
• Kadang kadang selnya telah mati
• Selnya telah mengalami penebalan dinding sesuai dengan fungsinya
• Di antara sel selnya dijumpai ruang antarsel.

Macam macam jaringan dewasa

Berdasarkan bentuk dan fungsinya, jaringan dewasa pada tumbuhan dibedakan menjadi empat macam jaringan yaitu :
a. Jaringan Epidermis
Jaringan Epidermis rnerupakan jaringan paling luar vang menutupi permukaan organ tumbuhan, seperti: daun, bagian bunga, buah, biji, batang, dan akar. Fungsi utama jaringan epidermis adalah sebagai pelindung jaringan yang ada di bagian sebelah dalam. Bentuk, ukuran, dan susunan, serta fungsi sel epidermis berbeda-beda pada berbagai jenis organ tumbuhan. Ciri khas sel epidermis adalah sel–selnya rapat satu sama lain membentuk bangunan padat tanpa ruang antar sel. Dinding sel epidermis ada yang tipis, ada yang mengalami penebalan di bagian yang menghadap ke permukaan tubuh, dan ada yang semua sisinya berdinding tebal dan mengandung lignin.
b. Jaringan Dasar (Parenkim)
Jaringan Parenkim terdiri atas kelompok sel hidup yang bentuk, ukuran, maupun fungsinya berbeda-beda. Sel-sel parenkim mampu mempertahankan kemampuannya untuk membelah meskipun telah dewasa sehingga berperan penting dalam proses regenerasi. Sel-sel parenkim yang telah dewasa dapat bersifat meristematik bila lingkungannya memungkinkan. Jaringan parenkim terutama terdapat pada bagian kulit, batang, akar mesofil daun, daging buah dan endosperma biji.
Berdasarkan fungsinya, jaringan parenkim pada tumbuhan dibedakan menjadi 5 macam yaitu:
• Jaringan Parenkim air. Jaringan ini dijumpai pada tumbuhan xerofit atau epifit sebagai penimbun air untuk melewati musim kering.
• Jaringan Parenkim asimilasi. Jaringan parenkim ini berfungsi dalam proses pembuatan makanan, terletak pada bagian tumbuhan yang berwarna hijau.
• Jaringan Parenkim udara. Jaringan ini berfungsi dalam mengapungkan tumbuhan. Jaringan parenkin ini dapat ditemukan pada tangkai daun Canna sp. sebagai tempat menyimpan udara.
• Jaringan Parenkim penimbun. Jaringan ini berfungsi sebagai tempat penyimpanan cadangan makanan. Jaringan parenkim jenis ini dapat anda temukan pada akar rimpang, empulur batang, umbi, dan umbi lapis. Cadangan makanan dalam jaringan parenkim ini disimpan dalam bentuk gula, tepung, protein, dan lemak.
• Jaringan Parenkim angkut. Jaringan in berfungsi sebagai pembuluh angkut baik itu makanan maupun air. Hal ini terjadi karena sel selnya memanjang menurut arah pengangkutan.
c. Jaringan Penyokong
Jaringan ini berfungsi untuk memperkuat berdirinya tubuh tumbuhan, atau memperkuat bagian tumbuhan. Yang termasuk jaringan ini ialah :
• Jaringan kolenkim. Serupa dengan parenkim, tetapi dindingnya mengalami penebalan dari zat selulosa terutama di bagian sudut-sudut selnya
• Jaringan sklerenkim. Sel-selnya mengalami penebalan dari zat lignin (zat kayu). Jaringan sklerenkim yang pendek disebut sklereid, sedangkan yang panjang disebut serat.
d. Jaringan Pengangkut
Jaringan pengangkut pada tumbuhan terdiri atas sel-sel xilem dan floem, yang membentuk berkas pengangkut (berkas vaskuler). Xilem berperan mengangkut air dan mineral dari dalam tanah ke daun, sedangkan floem berfungsi mengedarkan hasil fotosintesis dari daun ke seluruh bagian tumbuhan.
• Xilem
Xilem adalah jaringan pengangkut tumbuhan yang kompleks terdiri dari berbagai macam bentuk sel. Pada umumnya sel-sel penyusun xilem telah mati dengan dinding yang sangat tebal tersusun dari  zat lignin sehingga xilem berfungsi juga sebagai jaringan penguat. Unsur-unsur xilem terdiri dari unsur trakeal, serat xilem, dan parenkim xilem.
a. Unsur trakeal
Unsur trakeal  merupakan unsur yang memiliki fungsi dalam pengangkutan air beserta zat terlarut di dalamnya, dengan sel-sel yang memanjang, tidak mengandung protoplas (bersifat mati), dinding sel berlignin, mempunyai macam-macam noktah. Unsur trakeal terdiri dari dua macam sel yaitu trakea (pembuluh kayu) yang terdiri dari sel yang tersusun memanjang dan berderet dengan ujung yang berlubang dan bersambungan pada ujung dan pangkalnya dan trakeida yang terdiri atas sel panjang dengan ujung yang runcing tanpa adanya lubang sehingga pengangkutan melalui pasangan noktah pada dua ujung trakeida yang saling menimpa.
b. Serat xilem
Serat xilem merupakan sel panjang dengan dinding sekunder berlignin. Serat xilem ada dua pada tumbuhan, yakni serat libriform dan serat trakeid. Serat libriform mempunyai ukuran lebih panjang dan dinding selnya lebih tebal dibanding serat trakeid. Pada serat libriform dapat anda temukan noktah sederhana, sedangkan serat trakeid dapat anda temukan noktah terlindung.
c. Parenkim xilem
Parenkim xilem tumbuhan umumnya tersusun dari sel-sel yang masih hidup. Parenkim xilem dapat anda jumpai pada xilem primer dan xilem sekunder. Pada xilem sekunder dijumpai dua macam parenkim, yaitu parenkim kayu dan parenkim jari jari empulur.
Sel-sel parenkim xilem pada tumbuhan berfungsi sebagai tempat cadangan makanan. Pada saat giatnya pertumbuhan, zat tepung tertimbun pada parenkim xilem dan menurun pada saat terjadinya aktivitas kambium. Parenkim jari jari empulur tersusun dari sel-sel yang pada umumnya mempunyai dua bentuk dasar, yakni sel-sel yang bersumbu panjang ke arah vertikal dan radial.

• Floem
Floem adalah jaringan pengangkut pada tumbuhan yang memiliki fungsi mengangkut dan menghantarkan zat-zat makanan hasil fotosintesis dan daun ke bagian tumbuhan yang lain. Floem tersusun dari berbagai macam bentuk sel-sel yang bersifat hidup dan mati. Unsur-unsur floem terdiri atas unsur tapis, sel albumin, parenkim floem, sel pengiring dan serat-serat floem.

jaringan meristem

Jaringan Meristem pada Tumbuhan – Jenis – Fungsi dan Ciri ciri

Organ pada tumbuhan terdiri atas banyak sekali sel. Sel-sel yang jumlahnya sangat banyak tersebut terbagi kedalam beberapa jaringan. Jaringan adalah kumpulan suatu sel dengan bentuk dan fungsi yang sama dan terikat dengan bahan antar sel tertentu sehingga membentuk suatu kesatuan. Kata meristem merupakan serapan dari bahasa yunani “meristes” yang memiliki makna “membelah”.

Fungsi jaringan Meristem

jaringan meristemJaringan Meristem adalah suatu jaringan pada tubuh tumbuhan yang berisikan sekumpulan sel yang belum berdiferensiasi dan aktif beraktivitas dalam melakukan pembelahan sel. Pembelahan sel adalah aktivitas pembelahan yang membagi satu sel induk menjadi dua sel anak atau lebih. Pembelahan sel pada jaringan ini terus berlangsung sehingga terus menambanh jumlah sel pada tumbuhan.
Jaringan meristem memiliki peranan yang sangat penting dalam pertumbuhan dan perkembangan tanaman. Pertumbuhan jaringan meristematik dapat dirangsang atau diinduksi dengan jalan melukai bagian tubuh tumbuhan ataupun lewat kultur jaringan. Meristem pucuk dan kambium adalah jaringan meristem yang sangat mudah untuk dirangsang pertumbuhannya. Jaringan yang terbentuk dari proses induksi ini disebut sebagai kalus. Sel-sel dalam kalus akan terus membelah secara in vitro.

Ciri Ciri Jaringan Meristem

  1. Selnya berbentuk prismatis, kubus atau membulat.
  2. Tesusun dari sel-sel yang aktif membelah.
  3. Antara sel satu dengan sel lainnya tidak terdapat ruang atau rongga, sehingga struktur jaringanya menjadi padat.
  4. Pada sel terdapat protoplasma dalam jumlah yang banyak
  5. Sel mudanya masih belum berdiferensiasi, sehingga dapat tumbuh menjadi jaringan apa saja.
  6. Tiap sel memiliki satu atau dua inti sel yang berukuran besar.
  7. Bagian dalam selnya tidak memiliki kandungan zat makanan hal ini disebabkan karena Plastida dalam jaringan meristem belum matang. Plastida adalah organel yang dinamis dan mampu membelah serta memiliki kegunaan sebagai tempat pembuatan atau penyimpanan suatu senyawa kimia penting.
  8. Vakola pada sel berukuran kecil atau bahkan tidak ada sama sekali. Vakuola adalah organel dalam sel. Vakuola berisi cairan yang banyak mengandung molekul organik.
Dengan adanya jaringan Meristem, tumbuhan dapat melakukan pertumbuhan primer dan pertumbuhan sekunder. Pertumbuhan primer dapat terjadi dikarenakan adanya aktifitas pembelahan sel pada jaringan meristem primer. Sedangkan pertumbuhan sekunder terjadi akibat adanya aktifitas pembelahan sel pada jaringan meristem sekunder, berikut ini penjelasannya.

Jenis Jaringan Meristem Berdasarkan Asal Terbentuknya

  1. Jaringan Meristem Primer
Jaringan meristem Primer adalah jaringan yang terbentuk dari sel embrional. Jaringan ini terdapat pada bagian ujung batang dan ujung batang tumbuhan. Pembelahan sel yang terjadi pada jaringan meristem primer adalah alasan dapat terjadinya pertumbuhan primer pada tumbuhan. Pertumbuhan primer yaitu pertumbuhan bertambah tinggi suatu tanaman tanaman. Pertumbuhan primer meliputi akar yang semakin panjang, dan batang yang semakin tinggi.
  1. Jaringan Meristem Sekunder

Jaringan Meristem berikutnya adalah meristem sekunder. Jaringan meristem yang sudah dewasa dan tidak dapat berkembang lagi menjadi asal terbentuknya jaringan meristem ini. Jaringan seperti ini dapat ditemui pada tanaman dikotil dan tanaman berbiji terbuka (gymnospermae). Kambium gabus dan kambium pembuluh tergolong sebagai jaringan meristem sekunder. Adapun fungsi dari jaringan ini adalah menyebabkan tumbuhan dapat bertumbuh besar dan lebar pada bagian batang dan cabangnya. Sifat pertumbuhan seperti ini tidak terdapat pada tumbuhan monokotil.
Aktifitas yang dilakukan oleh jaringan meristem sekunder adalah:
  • Menambahkan diameter tanaman dan membentuk lingkaran tahun pada penampang batang tanaman.
  • membentuk jaringan berkas angkut sekunder
  • Membentuk jari-jari empulur
  1. Jaringan Promeristem
Jaringan promeristem sudah ada sejak tumbuhan masih berbentuk sebagai embrio. Jaringan promeristem adalah pembentuk bagi jaringan meristem primer. Berdasarkan teori Harbelendt, jaringan promeristem akan berkembang menjadi tiga sistem,
  1. Jaringan protoderm, yaitu jaringan yang akan segera berkembang menjadi epidermis. Epidermis adalah jaringan paling luar pada tumbuhan. Lapisan epidermis hanya tersusun atas satu lapisan sel saja. Didalam sel epidermis terdapat protoplas meski jumlahnya sangat sedikit. Pada bagian tengah epidermis terdapat vakuola yang berukuran besar dan tidak terdapat plastida.
  2. Jaringan meristem dasar, yang kemudian berkembang menjadi jaringan dasar atau jaringan parenkim. Jaringan parenkim terletak disebelah dalam jaringan epidermis. Berbeda dengan jaringan meristem yang padat, jaringan parenkim cenderung berongga karena terdapat ruang antara sel satu dengan sel lainnya.
  3. Prokambium, yaitu jaringan yang akan berkembang menjadi silider pusat pada batang tumbuhan.

Jenis Jaringan Meristem berdasarkan Letaknya

  1. Jaringan Meristem Lateral
Merupakan jaringan yang berada pada kambium gabus dan kambium pembuluh (vascular Cambium). Kambium gabus adalah bagian dari korteks yang berfungsi dalam pembentukan lapisan kulit bergabus (phelloderm), sedangkan kambium pembuluh adalah kambium yang membatasi bagian kulit kayu dari kolom kayu. Kambium pembuluhlah adalah apa yang sering kita sebut sebagai kambium saja. Pertumbuhan kambium ke arah dalam akan membentuk kayu sedangkan perkembangan kambium ke arah luar akan membentuk kulit batang. Baik kambium gabus maupun kambium pembuluh terbentuk dari jaringan meristem yang sudah ada pada akar dan batang.

  1. Jaringan meristem interkalar
Jaringan meristem interkalar adalah jaringan yang berperan dalam pembentukan bunga dan mempercepat pertumbuhan diameter batang. Jaringan meristem ini terletak di antara jaringan meristem sekunder dengan jaringan meristem primer.
  1. Jaringan meristem apikal
Disebut juga sebagai meristem ujung karena keberadaan jaringan meristem yang letak pada bagian ujung akar, ujung batang utama dan ujung batang lateral. Semua jaringan meristem yang terbentuk dari jaringan apikal disebut dengan jaringan meristem primer yang mendorong terjadinya pertumbuhan primer. Karena berada di bagian ujung, meristem apikal menghasilkan sel baru yang membuat tanaman semakin panjang. Proses pertumbuhan pada jaringan ini juga menghasilkan daun bunga dan tunas apikal.
Menurut schmidt dalam teori tunika, terdapat dua daerah pada jaringan meristem apikal yaitu tunika dan corpus.
  • Tunika adalah bagian paling terluar pada titk tumbuh dan terdiri atas beberapa lapisan sel yang tersusun dan kumpulan sel dengan ukuran yang relatif kecil. Tunika mengalami pembelahan ke arah lateral dan akan berdiferensiasi menjadi epidermis.
  • Korpus adalah bagian pusat pada titik tumbuh. Area korpus adalah area yang luas dan tersusun dari kumpulan sel yang relatif besar. Korpus membelah dengan tidak beraturan ke segala arah dan akan berdiferensiasi membentuk jaringan-jaringan yang bukan jaringan epidermis.

struktur dan fungsi buah dan biji

Apabila serbuk sari dan putik telah masak dan terjadi penyerbukan yang diikuti pembuahan maka bakal buah akan tumbuh menjadi buah. Sementara itu, bakal biji yang terdapat dalam bakal buah akan tumbuh menjadi biji. Bagian bunga yang dapat berkembang dan ikut menyusun buah sebagai berikut.
  1. Daun pelindung, misalnya klobot pada tanaman jagung.
  2. Daun kelopak, misalnya pada tanaman terong.
  3. Tangkai putik, misalnya pada buah jagung.
  4. Kepala putik, misalnya pada buah manggis.
  5. Tangkai bunga, misalnya pada jambu monyet.
  6. Perhiasan bunga, misalnya pada nangka.
  7. Dasar bunga, misalnya pada tanaman elo.
Bagi tumbuhan biji (Spermatophyta), biji ini merupakan alat perkembangbiakan utama, karena biji mengandung calon tumbuhan baru (lembaga). Melalui biji ini tumbuhan dapat mempertahankan jenisnya.
Pada umumnya biji terdiri atas bagian-bagian seperti berikut.
  1. Kulit biji
  2. Tali pusar
  3. Inti biji atau isi biji
Kulit biji merupakan bagian terluar biji dan berasal dari selaput bakal biji. Pada umumnya, kulit biji dari tumbuhan berbiji tertutup (Angiospermae) terdiri atas dua lapisan sebagai berikut.
  1. Lapisan kulit luar (testa). Lapisan ini mempunyai sifat yang bermacam-macam, ada yang tipis, ada yang kaku seperti kulit, dan ada yang keras seperti kayu atau batu. Bagian ini merupakan pelindung utama bagi bagian biji yang ada di dalam. Lapisan luar ini juga dapat memperlihatkan warna dan gambaran yang berbeda-beda misalnya merah, biru, pirang, kehijau-hijauan, ada yang licin rata, dan ada pula yang mempunyai bentuk keriput.
  2. Lapisan kulit dalam (tegmen). Biasanya tipis seperti selaput, disebut juga dengan kulit ari.
Pada tumbuhan berbiji terbuka (Gymnospermae), kulit biji terdiri dari tiga lapisan sebagai berikut.
  1. Kulit luar (sarcotesta), biasanya tebal berdaging. Pada waktu masih muda berwarna hijau, kemudian berubah menjadi kuning, dan akhirnya merah.
  2. Kulit tengah (sclerotesta), suatu lapisan yang kuat, keras, dan berkayu.
  3. Kulit dalam (endotesta), biasanya tipis seperti selaput dan seringkali melekat erat pada inti.
Bagian lain dari biji adalah tali pusar. Tali pusar disebut juga tangkai biji. Setelah biji masak, biji akan terlepas dari tali pusarnya (tangkai biji), dan pada bijinya hanya tampak bekasnya yang dikenal sebagai pusar biji. Perhatikan Gambar 1.
Bagian-bagian biji
Gambar 1. Bagian-bagian biji
Bagian lain dari biji adalah inti biji. Inti biji adalah semua bagian biji yang terdapat di dalam kulitnya. Oleh sebab itu, inti biji juga dapat dinamakan isi biji. Inti biji terdiri atas lembaga yang merupakan calon individu baru dan putih lembaga (albumen). Putih lembaga merupakan jaringan berisi makanan cadangan untuk masa permulaan kehidupan tumbuhan baru (kecambah), sebelum dapat mencari makanan sendiri.